HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Reduced pigmentation (rp), a mouse model of Hermansky-Pudlak syndrome, encodes a novel component of the BLOC-1 complex

نویسندگان

  • Babette Gwynn
  • Jose A. Martina
  • Juan S. Bonifacino
  • Elena V. Sviderskaya
  • M. Lynn Lamoreux
  • Dorothy C. Bennett
  • Kengo Moriyama
  • Marjan Huizing
  • Amanda Helip-Wooley
  • William A. Gahl
  • Lisa S. Webb
  • Amy J. Lambert
  • Luanne L. Peters
چکیده

Hermansky-Pudlak syndrome (HPS), a disorder of organelle biogenesis, affects lysosomes, melanosomes, and platelet dense bodies. Seven genes cause HPS in humans (HPS1-HPS7 ) and at least 15 nonallelic mutations cause HPS in mice. Where their function is known, the HPS proteins participate in protein trafficking and vesicle docking/fusion events during organelle biogenesis. HPS-associated genes participate in at least 4 distinct protein complexes: the adaptor complex AP-3; biogenesis of lysosome-related organelles complex 1 (BLOC-1), consisting of 4 HPS proteins (pallidin, muted, cappuccino, HPS7/sandy); BLOC-2, consisting of HPS6/ruby-eye, HPS5/ruby-eye-2, and HPS3/cocoa; and BLOC-3, consisting of HPS1/pale ear and HPS4/light ear. Here, we report the cloning of the mouse HPS mutation reduced pigmentation (rp). We show that the wild-type rp gene encodes a novel, widely expressed 195-amino acid protein that shares 87% amino acid identity with its human orthologue and localizes to punctate cytoplasmic structures. Further, we show that phosphorylated RP is part of the BLOC-1 complex. In mutant rp/rp mice, a premature stop codon truncates the protein after 79 amino acids. Defects in all the 5 known components of BLOC-1, including RP, cause severe HPS in mice, suggesting that the subunits are nonredundant and that BLOC-1 plays a key role in organelle biogenesis. (Blood. 2004;104:3181-3189)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective release of α granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models.

Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, bleeding diathesis, and other variable symptoms. The bleeding diathesis has been attributed to δ storage pool deficiency, reflecting the malformation of platelet dense granules. Here, we analyzed agonist-stimulated secretion from other storage granules in platelets from mouse HPS models that lack adaptor protein (AP)-3...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Abnormal Expression and Subcellular Distribution of Subunit Proteins of the AP-3 Adaptor Complex Lead to Platelet Storage Pool Deficiency in the Pearl Mouse

The pearl mouse is a model for Hermansky Pudlak Syndrome (HPS), whose symptoms include hypopigmentation, lysosomal abnormalities, and prolonged bleeding due to platelet storage pool deficiency (SPD). The gene for pearl has recently been identified as the beta3A subunit of the AP-3 adaptor complex. The objective of these experiments was to determine if the expression and subcellular distribution...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY The Hermansky-Pudlak syndrome 1 (HPS1) and HPS2 genes independently contribute to the production and function of platelet dense granules, melanosomes, and lysosomes

Hermansky-Pudlak syndrome (HPS) is an inherited hemorrhagic disease affecting the related subcellular organelles platelet dense granules, lysosomes, and melanosomes. The mouse genes for HPS, pale ear and pearl, orthologous to the human HPS1 and HPS2 (ADTB3A) genes, encode a novel protein of unknown function and the b3A subunit of the AP-3 adaptor complex, respectively. To test for in vivo inter...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY The regulation of platelet-dense granules by Rab27a in the ashen mouse, a model of Hermansky-Pudlak and Griscelli syndromes, is granule-specific and dependent on genetic background

The ashen (ash) mouse, a model for Hermansky-Pudlak syndrome (HPS) and for a subset of patients with Griscelli syndrome, presents with hypopigmentation, prolonged bleeding times, and platelet storage pool deficiency due to a mutation which abrogates expression of the Rab27a protein. Platelets of mice with the ashen mutation on the C3H/HeSnJ inbred strain background have greatly reduced amounts ...

متن کامل

Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome.

Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004